SWAN Blog


Revamping the Smart Water Network Architecture
Guest Blog by Pernille Ingildsen (Manager Project Department at Hillerød Forsyning) and Saša Tomić (Digital Water Lead at Burns & McDonnell)

Established in 2010, SWAN’s five-layered model of a Smart Water Network (see figure below) is based on the following: 

  1.  The physical layer consisting of pipes, pumps, valves etc.
  2. The sensing and control layer consisting of sensors and actuators.
  3. The collection and communication layer consisting of data exchange and transmission.
  4. The data management and display layer consisting of various types of dashboards especially the SCADA system.
  5. The data fusion and analysis layer consisting of all the smart algorithms that make the system ’smart’.

This model serves a number of strategic and functional purposes. Firstly, it provides the industry with a terminology baseline and structured way of discussing smart water networks. The model enables us to point at a certain layer to get our point across. It can also be used when we develop new concepts when we discuss smart water in a troubleshooting session when we seek to optimise operations, and in a sense, it gives us a way to describe the very different fields of competence that are required across each level.

In this blog, we want to suggest two extensions of this model to reflect the evolving, multi-faceted nature of the smart water sector. The purpose of the extensions is to open up two additional fields for discussion and delineate two additional domains of competences necessary to succeed with SMART water networks.

Layer 0: Value Creation Layer

The first extension is even below layer 1 and could, moving forward, be called layer 0. We suggest the name of this proposed layer to be 'The value creation layer'. Value creation is critical for moving SMART Water from the domain of nerds and experts we don’t understand’ to the domain that belongs to everybody. Essentially, developing smart water systems is everybody’s job.

This is the layer or domain where stakeholders can ask questions like: How can we optimise this process? Why is this unit performing poorly at times? How can I monitor good performance? How can we make our utility consume less energy, chemicals, etc.? How can I optimise the maintenance of this system?

It is a domain where everybody from operations, to engineering, to finance, to customer service can ask questions and formulate challenges. It is also in this layer that consultants and providers of systems or products can discuss smart solutions with their customers. This is the very place where the value of what SMART can offer is discussed.

We need this domain in the model. As long as these types of questions are not in the model, we can not achieve the full potential of what we see in smart water systems and our stakeholders can’t ’talk’ with or to us.

Additionally, it is important to understand – and everybody who has tried knows this – that it is not an easy task to understand what exactly creates value: what kind of value and to whom? Likewise, it is actually quite complex to prove or validate value. I think all of us are a bit tired of SMART claims of around 20% improvements. Improvements compared to what? To a poor performing plant? In simulations? What? Therefore, it would be of vital importance to in a sense ’professionalise’ this discussion.

A professionalisation of the field would also enable more intelligent value creation discussions than the constant focus on return on investment (ROI). ROI discussions often end up being too one-dimensional for our times. A time where sustainability, community engagement, long-term planning and deep understanding are emerging key success factors. The combination of ROI discussions and an unclear starting point makes a lot of the current discussions in this domain less intelligent than they could be.

Layer 6: User Interaction Layer

The second extension comes after the fifth layer and could therefore be called layer 6 – 'The user interaction layer'. In this layer, the people who are responsible for operating the smart system are located. Today, this is a very vulnerable connection. This is also where the value-added promised in Layer 0 is delivered.  

This is especially relevant as systems are becoming increasingly ’intelligent’ in a complicated way based on highly advanced math methods such as machine learning, model predictive control, artificial intelligence, grey-box models, cluster analysis, etc. The number of tools is booming and there are very few people who know how to set up and develop ’smart systems’ based on these methods. As they are setting up the systems, they have to make a number of assumptions that are very hard to understand and hence validate or invalidate by those who – on the other hand - understand the water system on which the advanced math is going to operate. Making this communication work is non-trivial.

When the design work has been finalised, operators will have to interact with these advanced systems. What are they to do if they don’t understand what is going on? If something looks wrong? How are they supposed to continue the optimisation efforts? What if a special non-predicted event happens, should they turn it all off? If they haven’t interacted with the system for years – how are they going to operate it manually now? There are a ton of unanswered questions in this domain and without answers, SMART is not going to work out in practice.

Operators play an especially important role in SMART water systems - they are the ones that will play together with the system on a daily basis. Far too little attention has been paid to making this interaction intelligent and attractive. Instead, it has often been feared by operators that the SMART system will replace them in their job. Hence, a SMART system has to some extent been perceived with hostility by those who should work most closely together with the systems and embrace the transition/acceleration of smart water so that they can perform their tasks more efficiently. This is not viable. We need research in user interaction, user interface, collaborative design, etc. 

A focus on Level 6 will also lead to a better design of the Smart Water interface that will meet its intended need. We often expect a higher level of data literacy from the Digital System users than what is typical in the field. A well designed Smart Water interface should be no more complex than a traffic light, where Green means to keep going, Red means stop and Yellow means that more data analysis is needed.  


Why revamp the five-layer model?

Besides the important reasons mentioned under each layer, we must also embrace that we are moving from the ’Age of Smart’ to the ’Age of Sustainable’. ’Sustainability’ does not stand in contrast to ’smart’, it is better understood as building on top of ’smart’.

Applying ’Smart’ in the service of ’sustainable’ means to minimise energy consumption – or even better to minimise greenhouse gas emission by shifting energy consumption when possible to periods where green energy is available. It means minimising the emission of nitrogen and phosphorus – or even better to minimise it in response to the needs of aquifers. It means reducing chemical consumption – or even better control of the process so that biological phosphorus removal plays a major part in the cleaning process. It means controlling combined sewer overflows (CSO’s) to minimise first flush events – or even better to flush the sewers so that no debris builds in the pipes. It means monitoring water loss in drinking water systems – or even better monitoring for bursts to enable rapid localisation and repair.

Sustainability also has a social aspect. When looking at the concept of Integrated Water Resource Management (IWRM) which currently is the golden standard for sustainability, we have to understand all the water stakeholders – and they have to relate to the water systems we are managing. That means we need to communicate and to make the systems transparent to stakeholders – this is the only way stakeholders can take responsibility. On top of that, we experience again and again in IWRM projects that local stakeholders also contribute with information that was in our blind spots. Hence, collaboratively we will be able to engineer better systems and operate them more intelligently and eventually contribute to a more sustainable world.


The below blog is reposted from an article which appeared on SWAN Member, Idrica's, website on October 20, 2020. View the original article here.


The 5 Benefits of Digital Transformation for Water Utilities
Guest Blog by SWAN Member, Idrica

Digital transformation in smart cities


The current global pandemic has proved that digital solutions are not only a nice-to-have but a must-have for water utilities around the world.

Now more than ever it is vital to remotely monitor and operate assets, optimise operating costs in the face of unexpected events, manage emergency situations, rationalise resources and efficiently manage fieldwork. For all this to happen, cybersecurity must be an inherent component of the process.

As the need for connectivity deepens and water utilities get more comfortable with the technology, greater levels of digitalisation will occur. These are the benefits of digital transformation.

1- Data is translated into actionable information

The evolution of water meters, in relation to their data collection capabilities and communication systems, has led to unprecedented streams of information, which utility managers can use to make critical decisions proactively. However, today utilities only thoroughly analyse, on average, about 10 percent of the data they collect (2015 CIO Forum).

When conveniently used, AMI can help utilities take their digital transformation to the next level. Data collection is just the first step. For it to be useful, large data streams must be translated into actionable information via powerful analytical engines, allowing end-users to rapidly understand and act. This means that utilities should move from a data-siloed organisation to a data-centric one, having full transparency and interoperability. According to Jaime Barba, CEO Idrica and global smart water expert, “data means nothing if it can’t be turned into information”.

2- Managers can make better decisions for a resilient future

As consumer behaviours change and climate change accelerates, there is a growing need for long-term planning to drive business decisions, but also for making accurate short-term decisions. Water utilities must build for resilience, identifying potential impacts and developing adaptation plans. To build a sustainable water future it is necessary not only to have the adequate infrastructure but also to control in advance what is going to happen and why.

In this context, Digital Twins open a new paradigm for water supply and distribution networks management. By combining simulation modelling with artificial intelligence methods, they facilitate remote work and improve the ability to anticipate problems, even during emergency situations, and to take measures to avoid or minimise their consequences. Digital Twins are a valuable tool for contingency plans and they also serve as an operators’ training system, by facing simulated scenarios in the control room using historical data. All these functionalities are vital when travelling and fieldwork are restricted, in order to avoid breakdowns or service interruptions.

3- Utilities can move towards a customer-centric approach

The achievement of the United Nations’ Sustainable Development Goal 6 of universal access to drinking water and sanitation by 2030 requires that water resources are supplied sustainably, using digital frameworks to connect with customers and respond to their needs.

Thanks to technological innovations related to water meters, utilities can now become proactive in customer management. IoT, as an enabler behind the transformation of many companies, provides enhanced detail of client information which, used properly, provides added value services to customers, reduces complaints and can support industrial customers to optimise the use of water intake in their processes.

The benefits of digital transformation involve higher transparency with citizens, companies and institutions, who will become key agents for a resource that is becoming increasingly scarce, and for which their direct involvement is required.

4- Benefits of digital transformation: ROI is increased

The digitalisation of water resource management means savings at both the operational and investment levels. By automating previously manual processes, a smart water approach in organisations generates greater efficiencies at a lower cost. Any water utility, regardless of its phase in their digital transformation journey, can see increases in ROI from past investments and make the most of existing technology structures by implementing technological solutions to build a digital structure. The savings achieved can also be the basis for further investments in digitalisation, thus making this process sustainable.

5- Digital solutions can help in the fight against Covid-19

In addition to ensuring water services, it is also critical that the water industry contributes to the resolution of this pandemic. The early detection of COVID in wastewater facilitates decision-making by combining the near-real-time concentration of SARS-CoV-2 in sewer water with health, demographic and socioeconomic data. This way, authorities and health officials can make granular decisions at a city level to prevent spikes.

First step: overcoming resistance

On the path to the benefits of digital transformation, one of the main challenges is overcoming resistance. Cultural change within a water utility requires C-level executives to have a clear vision, or ambassadors with a strong conviction to change the system when a third party is leading the process.

People are one of the most important elements for achieving success. The generational change within the water sector means that new talent is joining organisations. By combining the best of all generations it is possible to move towards collaborative and interdisciplinary ways of working and speed up the change that has already started.

The current global pandemic has made digital transformation a must for the water industry. Let’s build a more resilient future together.

About Idrica

Based in Valencia, Spain – and with operations in Europe, the United States, the Middle East, Africa and Latin America – Idrica aims to become a leader in the digital transformation of the water sector, providing services and technological solutions for the management of the water cycle.


Tackling Water Infrastructure Challenges by Moving Towards
Smart Water Networks
A Young Professional's Reflections on the Closing of SWAN 2020
By Amin Minaei, Research Student (Center for Water Research, University of Pavia, Italy)
& contributions from Usman Khalil, PhD Candidate (University of Wollongong, Australia)

 

It might surprise you to hear, but there is one particular reason I’m grateful for limited travel this year. The move from in-person to virtual events afforded an opportunity to attend the SWAN 10th Annual Conference. This was my first experience participating in the well-known congress and it did not disappoint. I found many presentations that have enriched my work as a researcher in the field of water infrastructure engineering and I invite you to read my takeaways from the panellists’ practical experiences in the context of the digital water network.

My expertise is in developing optimisation models for solving real-world water distribution network problems. This is a nonlinear and complex challenge, where a singular global solution is inaccessible, however, near-optimal solutions are still obtainable for every problem. The Conference highlighted diverse water industry experts who shed new light on the aforementioned issue, and I am hopeful that by moving towards smart water networks we are closer than ever before to a global solution. 

The panel “The Good, The Bad, and the Leaky” focused on leak detection management and offered sustainable and continuous solutions to control and investigate Non-Revenue Water (NRW) reduction. I understood how monitoring network performance data could effectively help identify critical sections of a large pipe network to cope with this challenge. For instance, by implementing mature and successful DMA network monitoring with support software, the utility can control active leaks and provide enhanced network management, improved resilience and greater diagnostics. Andrew Donnelly (Head of Leakage Management, EPAL) illustrated this by referencing research from 2005 to 2019 on District Metered Areas (DMA) and Temporary Monitoring Zones (TMZ). 

 Figure 1- A practical example of successful NWR reduction trend, EPAL, water supplier in Portugal, presented by Andrew Donnelly.

Arik Mula (CEO, Mei Shikma) and Waseem Khan (Senior Engineer, PUB) shared their success with adopting new technologies for pipe leak monitoring and detection (e.g. acoustic sensors, micro-tunnelling, etc.), and shared their effectiveness, which begged the question of smart placement.

While common sense could be an answer, Pete Daykin’s (CEO, Wordnerds) presentation suggested the voice of customers as valid data for significantly helping operators identify and fix leaks. It turns out that using advanced metering infrastructure (AMI) is not only about the meter readings but also about analysing the data. Using text analysis software, Wordnerds was able to uncover the issues that caused the most damage to customer sentiments to help utilities improve the customer experience. This is further proof that the quantity and quality of data, with consequent analytics, should be the main driving force for change. 

In the panel on “Next Generation Wastewater Management,” there was a key agreement on the power of digital transformations. Javier Garcia del Rio (Automation and Instrumentation Coordinator, Canal de Isabel II, S.A.) suggested that digital transformations enable optimisation by leading to greater efficiencies in the economy and better governance. This was supported by Perttu Saarinen (Automation Engineer, HSY) who introduced an integrated approach to using data to develop operations in a wastewater network and creating a comprehensive smart water platform to connect utility customers.  

The benefits of automation were also discussed by Michelle Aguilar (CTO, VAPAR) and James Devereux (Drainage Strategy Analyst, United Utilities) who demonstrated a faulty detection in sewer pipelines from CCTV, and suggested that automation and AI-based models can supplement manual intervention to improve the system’s outcomes. This was emphasized by William Jeal (Business Manager, Veolia) who proposed the use of long-term data and real-time predictive models to optimise the CAPEX and OPEX of a wastewater treatment plant. While dealing with huge amounts of data is inextricably bound with smart water networks, the panel demonstrated the various types of data and insights one could gather.

Figure 2- Digital transformation provides the opportunity of an optimization process for a system, presented by Javier Garcia Del Rio.

During the panel, “Overcoming Network Challenges,” the panellists shared challenges related to water infrastructure systems, such as water quality failure, service interruptions, and increases to NRW. Sebastian Otero (Network Manager, Essbio) noted that data-driven technologies, such as efficient valving and smart DMAs, can help acquire helpful network data and the ability to monitor this data in real-time can help with predictions. Based on a root cause analysis, the team at Essbio was able to deliver network adjustments which resulted in a 50% reduction in customer service interruptions over the past five years. This type of data-driven decision-making can help improve communication between operators, data providers, and customers, and takes us one step closer to a global solution based on smart water networks. 

Figure 3- The trend of reduction in service interruptions by a novel platform, ESSBIO, Water Utility, Chile, presented by Sebastian Otero.

On the final day of the Conference, the panels focused on building a sustainable and resilient water future and defining a successful utility digital transformation. By creating policies and pursuing coordination among stakeholders, the panellists demonstrated how smart technologies can guarantee the resiliency of their wastewater and water networks.

In spite of the global challenges, diverse leaders from around the world shared their perspectives on how to adapt to the new normal. I was impressed by the panellists who shared how their data-driven approaches took effect and produced results. The final day of the Conference was also met with a global networking session which was a fun opportunity to meet the industry experts, engineers, business managers, advisors, and executives who shared their insights and vision on a global scale.

In the end, to me, the SWAN Conference was an unforgettable experience. During the congress, I managed to network with global leaders, which threw new light on my future professional life. I had interesting conversations with Prof. Dragan Savic (CEO, KWR) and Dr. Andrea Cominola (Chair of Smart Water Networks, TU, Berlin) using the Conference mobile application and engaged with others during the roundtable discussions. Now, I feel more confident in my field than before and believe that the journey towards smart water networks will eventually lead us to the best, most efficient system. To raise a common water industry quote, “the water industry has come a long way, and yet we still have so far to go”. 

Don’t miss your chance to claim this knowledge captured from leading utility and industry experts at the largest, global smart water gathering. Access all Conference materials and presentations HERE


Understanding Digital Transformation in the Water Industry
A Young Professional's Reflections on the Opening of SWAN 2020
By Emma Grace, Anglian Water Group & SWAN's Rising Smart Water Professionals (RiSWP)

 

The water industry is not the first thing most people think of when talking about SMART technology – especially when water and electronics often aren’t a good combination. But if anyone needed proof that innovative technology was a focus for water companies and industry partners on a global scale, the SWAN 10th Annual Conference was the place to get it. With three days of topics from Aligning People and Strategy, to Digital Twins, to industry resilience, SWAN 2020 brought together industry experts and innovations to explore the future of the smart water sector.

As a young professional (and relatively new to the water industry), it was a fantastic opportunity to hear from strong leaders within my industry – such as keynote speaker Peter Simpson (CEO, Anglian Water UK) who spoke about the importance of treating data with as much care as our physical assets. He highlighted the importance of removing silos both for data and for people and “building back smarter” instead of bigger. On the first day of the conference, inspirational speakers like Peter helped paint a picture of the potential future of the water industry – and the opportunities for those of us who are just getting started.

Across all the panels, roundtables and industry professional speeches, a few themes linked all the experiences together. Joao Feliciano (CEO, AGS) spoke about aligning people and strategy by giving an example of how AGS responded to a change in the regulator’s requirements to implement asset management plans – while many others saw this as a threat to their way of working, Joao saw the challenge as an opportunity to drive positive change. 

Similarly, Reid Campbell (Director of Water Services, Halifax Water) talked about using problems to evaluate the estate in its entirety - and avoid getting tunnel vision. For Halifax Water, this became apparent with the realisation that the positive impact of deploying improved meter reading sensors would be limited while the data those sensors were gathering wasn’t being handled and used to its full potential. Both of these are great examples of not getting lost in the details, and not being afraid to expand the scope of innovations.

Another common theme was building a culture that enabled and encouraged operational teams to input into strategy and to help steer us towards our goals. Torri Martin (Deputy CIO, City of Atlanta) spoke about demystifying technology by asking employees of the water utility for the innovations they would like to see – letting the workers who know the issues, identify the need for change and provide the solutions by building innovation into internal business processes. Jennifer Rebeiro (CIO, City West Water) also spoke about how by transitioning the business mindset from asset focused to customer-focused and providing data and analytics across all levels of the business, City West Water aligned their day-to-day operations to the needs of the business and the needs of their customers. 

One of the strongest themes throughout the day was breaking down silos, both for data and for people. Martine Watson (Head of OT Programs, Sydney Water) highlighted this for OT, which across the water industry has a history of being kept isolated from IT and the wider business. This has limited the usability of OT data, but with the rapid acceleration of technology in both the IT and OT space, it’s become increasingly easier to bring that data from physical assets forward to the people who can use it to make decisions. This important point was also covered by Keith Hayes (VP, Bluefield Research) who shared his experience with how the increase in awareness of the possibilities of data spurred a rethink of system architecture – to break down barriers not just in data, but also between data and the people who can use it.

In only one day of the 3-day virtual event, I learnt so much about the mindset and possibilities of the water industry on an international scale. Having a better understanding of the challenges the industry faces and the potential for positive change inspires me to drive for the best future we can build.

 

Don’t miss your chance to claim this knowledge captured from leading utility and industry experts at the largest, global smart water gathering. Access all Conference materials and presentations HERE


How COVID-19 is Affecting Water Operations Worldwide 
Insights from Italy, Spain, US, and the Netherlands
By Sapir Yarden, Project Manager, SWAN Forum


The swift spread of the Coronavirus disease (COVID-19) across the globe has resulted in unexpected and at times, under planned for, impacts. In some countries, the outbreak has moved businesses to halt on-site operations and urged employees to work from home. The water industry, however, is quickly adapting to the new reality and leveraging remote capabilities to continue supplying clean and safe drinking water and wastewater services to its residential, commercial, and industrial customers. For example, at Madrid-based Canal de Isabel II, the utility enabled telecommuting for 1,350 employees, including its full command centre, within only two days.

At the Smart Water Networks Forum (SWAN), we tapped into our global membership and asked four utility leaders in Italy, Spain, the United States, and the Netherlands to share how the global pandemic is affecting their smart water operations.

Continue to read below for the responses and strategic insights from:

  • Bruno Pannuzzo – Drinking Water Treatment Plants Management at Metropolitana Milanese (MM)
  • Andreu Fargas – Maintenance Department Chief at Consorci d'Aigües de Tarragona (CAT)
  • Andrew Lee – Deputy Director of Drainage & Wastewater at Seattle Public Utilities (SPU)
  • Rik Thijssen – Business Development Manager at Vitens

 

What has been the impact of COVID-19 on your city’s water utility operations?

MM: We had to re-organise all our ordinary activities. We activated remote working for as many employees as we can and kept all those activities that can be listed as “indispensable,” such as Emergency Management and maintenance at drinking water treatment plants, to guarantee water supply and quality 24/7. Additionally, our customer service is always active both on our website and via telephone number. 

CAT: The COVID-19 virus has a great impact on everyday activities. Water delivery is completely guaranteed, but the protection of employees is the main concern. We have implemented changes in working spaces, reduction of people interactions, change in work shifts, and working from home offices when possible. It is a tough time for essential services, but water must reach clients every day.

SPU: We provide drinking water to the greater King County population as well as drainage, wastewater and solid waste (garbage, recycling, and compost) services to our City. Approximately three days before the City’s emergency declaration on COVID-19 at the beginning of March, SPU implemented an Incident Command System (ICS) team to manage all planning, logistics, finances, and operations related to the crisis.  SPU has been working to meet three key objectives: (1) Preserve continuity of essential water, wastewater, stormwater, and solid waste operations; (2) Protect employee and public health from COVID-19 exposure; and (3) Communicate in a timely and effective manner with our employees.

To preserve the continuity of essential functions, we immediately revisited and updated our Continuity of Operations Plan (COOP).  We have also assembled a set of best practices for safety, hygiene, and social distancing, that was distributed to all managers/supervisors for implementation within their workgroups.  During the first 3 weeks of our COVID-19 response, we did not experience a significant increase in the vacancy rate of our staff reporting to work.  As such, we were able to maintain operations without a disruption in service.  However, we made plans for different scenarios of employee vacancies, including a 25%, 50%, and 75% reduction in the available workforce.

On March 23, 2020, the Washington State Governor announced a “Stay Home, Stay Healthy” order.  Pursuant to that order, we are now transitioning to our COOP, and are focusing on telework for all employees who can feasibly do so and essential operations for employees who cannot telework.  We are now in our 4th week of our COVID-19 response, and some workgroups are experiencing elevated levels of vacancies – mostly due to recently implemented human resource policies that allow at-risk employees over the age of 60 to be placed on administrative leave.

Vitens: COVID-19 is having a significant impact on the daily operations at Vitens. The rehabilitation and construction activities within the distribution network that do not require direct contact with people remain unaffected, but the non-critical rehabilitation and construction activities at residential connections have been postponed for safety reasons. Additionally, almost all maintenance activities at production sites in co-operation with external contractors are postponed to avoid direct contact. All other activities between Vitens employees and customers (e.g. meter reading, collection, inspection) have stopped. Offices have been closed since March 20th but we are working from home using all digital tools since March 13th

Vitens' production & distribution operations were already prepared to operate from “a distance,” so we can monitor the whole operation from home. We can change settings or even solve alarms when we are not on site. Of course, we have to visit the production plants for specific operations, but in these cases, our employees go there on their own. We have had no big incidents so far.

 

Have any digital solutions enabled you to improve your response capabilities?

MM: Our digital solutions work on two parallel pathways: on the one hand, we have allowed almost all of the technical staff to work from home and continue doing their job in the safest way (e.g. using VPNs to connect to our services); on the other hand, all the online systems that give us information on specific operational or process parameters, are connected to a dedicated control room where the operators can check that everything is functioning correctly.

CAT: Digital solutions are helping us overcome operational changes due to COVID-19. We secured online access to all the processes, from catchment to treatment and final distribution, which has helped employees implement home offices for teleworking. Moreover, although COVID-19 is not transmitted through water, online water quality monitoring helps to show the client population that their safety is under control.

SPU: Digital solutions have enhanced our ability to implement social distancing and best hygiene/safety practices.  Where digital solutions have been implemented effectively, staff can work remotely and with less person-to-person contact. Also, digital solutions have been rolled out to public-facing activities, where we have been able to decrease or close down public-facing counters/activities to avoid direct contact with the public. Digital solutions have facilitated virtual meetings with staff and the public and have also facilitated greater ease of accessing information for both our staff and the public.

Vitens: All Vitens employees can work remotely with the applications they need. Regarding our operations, the Vitens SmartGrid and enabling technologies such as SLIMM, OPIR (Aquasuite RHDHV) and the dense sensor network are operating as a real-time digital network. In the case of an emergency, we can respond immediately to our customers by making use of WhatsApp, SMS, and website applications to manage social media traffic. 

 

In these crisis times, what measures (if any) should residents take regarding their water use?

MM: Regarding the COVID-19 emergency, residents do not have to take specific measures for their water use. According to the water, sanitation, hygiene, and waste management for the COVID-19 virus report published by the WHO, the virus has not been detected in drinking water supplies [..]” and “centralised water treatment methods that utilise disinfection should inactivate the COVID-19 virus. The COVID-19 virus is likely to be more sensitive to chlorine and other oxidant disinfection processes than many other viruses”. At MM, we use Sodium hypochlorite (NaClO), so our residents’ safety is guaranteed.

CAT: It is important to remember that water safety is completely guaranteed due to the different disinfection processes in the Treatment plant. Fortunately, water delivery is not impacted by this emergency, so the residents do not need to take special measures but must continue to use water responsibly during confinement.

SPU: During the COVID-19 emergency, we are encouraging residents to continue using their water as they would normally. Their water is safe to consume.

Vitens: Water utilities in the Netherlands received science-based information from both the National Institute of Health (RIVM) and KWR (Dutch Water Research Institute) that there is no significant risk of COVID-19 related to drinking water production and consumption. This information was shared to all Vitens customers including industrial users and critical locations like hospital and elderly homes that the use of tap water is safe

As demonstrated by MM, CAT, SPU, and Vitens, water utilities are at the forefront of the global pandemic and responding to emergency situations. By leveraging smart water technologies, water operators can implement data-driven responses and more effectively adapt to new challenges. Such efforts are representative of must-have smart water strategies as part of this new world order.

 

How is your organisation responding to the COVID-19 outbreak? Let us know: sapir@swan-forum.com


A South African Student's Perspective on Smart Water 
Lessons learned from my internship at SWAN
By Carmela Kangisser, Research Analyst, SWAN Forum


In September 2019, I began my internship with the SWAN Forum as a Research Analyst. With a year left of my Chemical Engineering degree, I took six months off to intern abroad. Coming from South Africa, I was hyper-aware of water shortages issues. This was clear from late 2017, a time when the frightening reality of Day Zero in Cape Town, when the dams reached critically low water levels, and the possibility of a city running out of water created absolute panic throughout the country. Stringent water regulations and restrictions were implemented. However, by mid-2018 the issue seemingly evaporated. This near absolute disaster made clear the need for data-driven, smart water solutions.

The smart water sector provides a critical niche within the water industry. By incorporating technology into aging water assets, SWAN encourages efficiency in water systems and proves that the water field like all other fields, should be constantly progressing and evolving.

Based in the UK, SWAN is an international non-profit comprised of different global alliances in the Americas, Europe, and Asia-Pacific, which allow local utilities, companies, and universities to accelerate their smart water/wastewater within their region. By being part of SWAN's global network, each member is exposed to best smart water practices from around the world. My experience as as a Research Analyst, allowed me to connect with many different experts who are extremely passionate and dedicated to improving the water sector.

I strongly related to the SWAN Rising Young Water Professionals (RiSWP) group, which brings together like-minded young professionals to engage with SWAN's global community, share their research, and discover job opportunities. This is vital due to water industry's aging workforce and need for new young talent. 

Based on my engineering background, I was particularly interested in the Digital Twin concept since it is still relatively new in this sector and needs promotion and collaboration. It is clearly a concept of major interest to many innovative global utilities. The leader of the SWAN H2O Digital Twin Work Group, Gigi Karmous-Edwards was one of the many engaging people that I had the privilege of interacting with. I found her enthusiasm for this fascinating concept inspiring.

SWAN creates a unique platform and neutral space for collaboration for utilities and even competitors to discuss important trends and innovative solutions. I am so grateful to have been exposed to the concepts, ideas and leaders in the smart water field over the past few months and to have been a part of the SWAN family. In the future, I think that it will be necessary to find innovative ways to assist not only developed, but emerging countries since they are in the most need of such technologies, but do not yet have the means to access them. 


Smart Water should be Insight-Driven, Prioritise Co-Creation, Tied to Equity & Cyber Secure
Utility & industry thought leaders discuss smart water insights at WEFTEC 2019
By Shirley Ben-Dark, Marketing & Innovation Lead, SWAN Forum


Three weeks ago, at WEFTEC 2019, the SWAN Forum brought together utility and industry thought leaders to share their findings from the SWAN 2019 Conference held earlier this year in Miami. The distinguished line-up at this session featured the following speakers: Jim Cooper (Global Solution Leader - Intelligent Water at Arcadis North America), Torri Martin (Chief of Innovation at City of Atlanta’s Department of Watershed Management - DWM), Nicole Pasch (Acting Assistant Environment Services Manager at City of Grand Rapids, Michigan) & Garth Harrison (Critical Infrastructure Sales Executive - Water and Wastewater Management at Owl Cyber Defense). 

During this session, which was highlighted by an engaging panel discussion, each thought leader offered their take on key issues that smart water practitioners, from utilities to solution providers, should take into account when forming long-term strategies and effective implementation plans. Below are the key insights each speaker shared, marked by a quote that captures the main messages presented. 


“Smart water needs to be insight-driven rather than just data-driven”
- Jim Cooper (Arcadis North America)

The presentation focused on the integrated dimensions of artificial intelligence, machine learning, and affordability and equity within the smart water sector. According to Jim, for utilities to keep up with the doubling costs of acute shocks and increasing resiliency challenges, both the workforce and senior leadership must turn to insight-driven data that is people enabled. Citing a great example from the Miami-Dade Water and Sewer Department (WASD), Jim touched on the utility’s impressive work incorporating workforce resiliency as part of their overall asset management strategy. In this case, the workforce was seen as a key asset within the utility’s implementation strategy. 

My two cents: Jim’s thought leadership in this area is both logical and performance-based. For utilities to demonstrate the true value of smart water implementation (to their internal workforce as well as external customers), they need to be able to communicate insights rather than standalone data dashboards and other visualisation tools and operating systems. It will be interesting to see how global utilities transition from valuable data to actionable insights.  


“We’re data rich but information poor. Innovation is at the core of our smart utility framework to add value to customer value chain”
- Torri Martin (City of Atlanta, GA, Department of Watershed Management)

Despite the City of Atlanta’s progressive lead on many smart city and smart water initiatives, Torri humbly discussed how many cities may have no shortage of data available, but the actual information to drive decision-making is still lagging behind. Rather than wait for external vendors to address this challenge, Torri and his team saw this as an optimal opportunity to prioritise becoming a “Smart Utility” into their overall strategic plan. This included embedding innovation as part of the procurement process, by emphasising “creative contracting” and “co-creation” between different solution providers and the utility itself. Torri shared the various components of the “Smart Utility” program, which includes people (both internal workforce and external customers), process, policy, governance, and technology.


Source: Torri Martin’s SWAN Technical Session Presentation, WEFTEC 2019

My two cents: I found Torri’s point on considering procurement methods in a new light very interesting. Rather than viewing procurement as a way to encourage innovation, we should consider embedding innovation within the contracting phase itself. This could take many forms such as simplifying legal jargon, adding dynamic and flexible clauses, incorporating elements of co-creation (which can lead to revenue sharing agreements on product deployment), and addressing sustainability and equity plans. 

 

“Digital solutions need to be able to have the capacity to address real problems and should take equity into account” - Nicole Pasch (City of Grand Rapids, MI, Environmental Assessment Division)

In a discussion on the City of Grand Rapids’ digital transformation strategy during the 2008 economic recession, Nicole described how the city took on an operator’s perspective. She noted the CFO’s important role in driving change by spending less on O&M and more on identifying methods of operational control. This approach focused on layered communications and the visualisation of data and its management. 

Later on, as part of her panel comments, Nicole discussed a CSO case study, in which equity was not sufficiently taken into consideration in part of a low-income area in the city, ultimately impacting the local community’s ability to reap those benefits. She added that this could have been averted by both leveraging more open-source technologies that can directly feed into the city’s innovation and mapping systems, as well as by tapping into key stakeholder feedback earlier on in the process (for example, community leaders and the public sector).

My two cents: Given the proliferation of smartphones and the fact that social media channels have become a go-to source for news and updates, utilities and solution providers alike must increasingly take into account their community stakeholder’s perspective and influence in the community prior to implementing smart water initiatives. By encouraging residents to take an active role in addressing water challenges through innovation-related co-creation programmes or prioritising affordable solutions, the utility can gain a social license to operate.  

“Cyber should be seen as a catalyst for smart water acceleration” - Garth Harrison (Owl Cyber Defense)

As the final session speaker, Garth focused on one of the most critical aspects of a smart water strategy - cyber security. In his presentation, Garth discussed the critical challenges facing water utilities today: technical skills shortage, the geographic spread of assets, and the inability to sufficiently patch legacy systems. Garth also applauded the efforts of US-based regulation and the Department of Homeland Security’s efforts to spur utilities to prioritise cyber security efforts in this space as a means to safeguard critical infrastructure. He also stressed the need for layered and training-based approaches to ensure that the workforce is up to date with the latest security protocols and expectations. 

My two cents: Implementing a smart water strategy must prioritise a strategic cyber security  plan, regardless of whether centralised or decentralised systems are in place. Having the foresight to put the right security measures in place prior to extensive technology deployment can increase enterprise and system resiliency, as well as lead to heightened customer trust and overall satisfaction.  

___________________________________________________________________________

Interested in learning from these and other smart water thought leaders? You’re invited to purchase the recently published Smart Water eBook jointly produced by the SWAN Forum and Water Online, featuring 14 cutting-edge smart water insights from SWAN 2019 speakers and partners. *SWAN Members can download this report for free in the Member Zone


Key Takeaways from 1st SWAN APAC Alliance Workshop
By Amir Cahn, Executive Director, SWAN Forum


On July 22nd, I had the pleasure of attending the inaugural SWAN APAC Alliance Workshop, co-hosted by Unitywater in Noosa Heads, Australia. The Workshop brought together over 130 utility, industry, and academic experts from across the region. There were many interesting presentations and discussions throughout the day, but three, key themes really stood out to me: (1) Keeping Customers Informed; (2) Maximising Value from Big Data, and (3) Meeting Future Needs.

1.    Keeping Customers Informed

The first panel of the Workshop focused on improving the customer experience and featured four, leading Australian utilities: Sydney WaterYarra Valley WaterQueensland Urban Utilities, and South East Water. Each presenter provided proactive, predictive strategies to keep their customers informed. A few key lessons shared were to be consistent with messaging, tailor it, be as specific as possible, and conduct customer research to listen and understand customer needs. For example, Glen Carter, Manager Network Intelligence at Yarra Valley Water stated that most of their customers are interested in preventing water leaks in their home and are even willing to pay more for this service.

“Smart water is not just about collecting data from the field, but how you relate it to the customer”

Darren Cash, Customer Hub Manager at Sydney Water, cited a 40% reduction in inbound calls related to water interruptions thanks to their SMS and email communication service. Furthermore, Lucia Cade, Chair of South East Water, shared how their digital metering program can cater to different customer personas such as “Savvy Sally” and “Dependable Brett,” and the value of recognising customers for their conservation. 


Source: SWAN APAC July Workshop Presentation, Lucia Cade


2. Maximising Value from Big Data

A second major theme of the Workshop was the evolving role of Big Data in water utility operations, including how to define it, underlying challenges, and best ways to maximise it. In her keynote, Dr. Cara Beal, Senior Lecturer at Griffith University, described the “5 V’s of Big Data” which include “greater Variety arriving in increasing Volumes with ever-higher Velocity, and the importance of showing Veracity and Value, since we need to trust and maximise the data we collect." 


Source: 
https://www.techentice.com/the-data-veracity-big-data/


Underlying Big Data challenges and opportunities were discussed at the Workshop roundtable I attended led by Peter Prevos, Manager Data Science at Coliban Water. I compiled the findings into the acronym, AGILE

Accurate – There is often short tolerance for new solutions, so data needs to be as accurate as possible to be fully accepted.

Gradual – Obtaining high data quality doesn’t happen overnight; rather, it’s a learning process.

Interactive – Excel is usually preferred to analyse data, but there are many more effective ways such as statistical analysis, dashboards, and integrated platforms.

Literate – Interpreting complex data often requires data scientists who also need to be skilled communicators.     

Everyone – Instead of being limited to few people, data should be shared across a utility and even outside to regulators and customers. 

A related roundtable led by Nick Brown, Regional Planning Manager, Healthy Waters at Auckland Council focused on the value of democratising data which keeps organisations accountable and on track in the long-term. If a utility effectively communicates a plan for outcomes the community desires, customers can decide upon the level of importance and how much extra they would be willing to pay to achieve these outcomes. This would require a multi-agency approach and brave political leadership. 


3. Meeting Future Needs

Workshop speakers from Xylem, VAPAR, AVEVA, and Innovyze shared innovative tools such as decision intelligence, deep learning, and Digital Twins now assisting communities in adapting to real-time changes in the network and successfully plan for the future. 

In the closing panel, George Theo, CEO of Unitywater, asked the audience to think about a current 5-year-old who will be a customer in 15 years’ time. What will their expectations be and what type of service level will they expect their utility to provide? He pointed out that perhaps it’s possible to provide that outcome given ongoing advances in software, hardware, artificial intelligence, among other technological improvements. He also mentioned new opportunities with current technologies such as utilising smart metering to enable customers to select their own billing frequency.

As the leading global hub for the smart water sector, SWAN brings together key players in the water industry to collaborate and share knowledge in order to accelerate the development of data-driven technologies in water and wastewater networks worldwide. This includes regional initiatives such as the SWAN APAC Alliance, which accelerates smart water and wastewater in the Asia-Pacific region through collaborative workgroups, webinars, tailored research reports, and an annual workshop.

  • View presentations and photos from the recent, SWAN APAC Workshop HERE.  
  • View the recent SWAN APAC Webinar “Advancing Water Loss in Southeast Asia” HERE

The below is an article which appeared on LinkedIn on June 21, 2019. View the full original article here.

Real Time Digital Twin of Water Distribution Network

By Keshvinder Singh, Consultant Water & District Heating/Cooling, AVEVA

Digital twin is a virtual model of a process, product or service. Pairing of virtual and physical worlds allows analysis of data and monitoring of systems to head off problems before they even occur, prevent downtime, develop new opportunities and even plan for the future by using simulations -Forbes

Very often, a water distribution network is designed by private consulting companies based on peak flow (in terms of liters/day per capita) forecasted 20 - 25 years in future. Other factors considered are fire flow, pressure service level, head loss per km in the pipes, network velocity, ease for future extension, storage during supply disruption and cost There are many commercial tools available in water network design.

Once a network is designed and constructed, the utility takes over the operations of the network. During the design phase, very little attention is given to the need of instrumentation in the network. This poses an issue to the utility as the utility now has very little idea of what happens to the water once it leaves the treatment plant.

 

80% of the investment is made in the distribution network but on average, utilities only has 20% visibility of what is happening to the water in the network. This 20% are points in the network that has instrumentation. 

 

It is unnecessary to monitor every segment of the network by installing instruments. A real time online model interpolates/ extrapolates these instrument readings to provide hydraulic & water quality conditions in the rest of the network.

 


Real Time Online Digital Twin

Offline models are steady-state models and do not represent the actual operations over a longer period horison. Many inputs are estimated such as pump and valve settings. With online model, these settings can be taken from actual field measurements.

The design model would need to undergo some changes and calibration process to match as close as possible the normal operations of the network. Additional instruments need to be installed in the network to calibrate the model. Once calibrated, the model can now be linked to SCADA database and be turned into a real time model.

The diagram above tries to explain the data flow in a real time online model. Data from field instruments are fed to the model via SCADA. The model uses these readings as boundary conditions to run a simulation. Once a base simulation is run, the results of that simulation is used to run an optimisation simulation. The output of this optimisation would be pump & valves set points that can now be sent back to SCADA (from SCADA to PLC). This set points allow the network to be operated in the most optimum manner in an automated closed loop way. This process is repeated on hourly or quarterly basis depending on the utility's requirement.

Some operational benefits of having an online model would knowing the customers affected in real time, which customers are receiving low pressure now, which customers will have supply disruption later tonight and informing those affected consumers in advance
 

Also tracking a pollutant spread in real time and knowing the water source breakdown at each node.

 

Using real time model for optimisation

a) Night line monitoring - Night line measurement (NLM) is the minimum flow to a sone, typically measured early in the morning i.e. 3 am - 5 am. Increasing values are in general indications of a leakage in the network or a measurement error. By having connections to measurements database, user can plot the night-line measurement graph allowing to compare actual NLM values for a full week with additional average values of night line measurements i.e. current NLM vs 3 months average vs 1 year average. Having a real time model, user may overlay the actual demand pattern in the sone with the actual inflow to the sone and investigate the differences

b) Pressure Optimisation - The goal of pressure optimisation is for a real time model to calculate and send a pressure set point to valves or pumps (via SCADA) that will ensure minimum needed pressure in the sone at all time steps. User defines the minimum pressure required in the sone throughout the day and the model ensures that all nodes in the sone satisfies this minimum pressure requirement and in return calculates what should be the upstream pump lift or valve set point in order to meet this minimum pressure. This reduces excess pressure in the network and in return, reduces energy usage, water loss and extends asset lifetime by reducing wear & tear.

 
c) Pumping optimisation - It provides optimum pumping flow set point back to SCADA on real time basis taking into consideration the various network constraints as shown in the left schematic diagram. The result would be an optimised pumping flow aimed at pumping cost reduction allowing for energy cost saving and extending asset lifetime

 

d) Demand forecast - Imagine having the ability to know in advance which water tanks will run dry or overflow in coming hours. Using historical demand, the model would be able to predict future demand and operator would be able to take precautionary steps to alleviate low pressure sones

 

e) Asset condition assessment - User can prioritise pipeline rehabilitation by taking into consideration dynamic variables given by real time simulation results (pressure, pipe flow, velocity, pressure gradient, pressure deviation in a day etc) and static variables from field survey (traffic load index, soil index, pipe break index, material, number of served customers, diameter, depth etc) Any number of additional parameters can be added to assess the asset condition and prioritise replacement. Other analysis can also be done such as shear stress and turbidity analysis.

Benefits of having a real time digital twin of water network : pressure management, valve operation simulations, impact assessment, water loss assessment, water age simulation, demand prediction, optimisation of pumps and valves settings and real time contaminant propagation analysis, source tracing, audit of instruments, network prediction for few hours ahead, etc etc

 

Note: The screenshots are taken from Aquis Water Network Management by Aveva

References: SWAN Forum, MIT, MDPI Water, Drinking Water Engineering & Science, Aveva, Schneider Electric, "Locating pipe bursts in a district metered area via online hydraulic modelling", "Parameterisation of offline and online hydraulic simulation models"

 “When the well’s dry, we know the worth of water.” – Benjamin Franklin

The below is an article which appeared on LinkedIn on June 24, 2019. View the full original article here.

The Future of Digital Water
Bluefield Perspectives from Miami

By Eric Bindler, Research Director (Digital Water) at Bluefield Research


The water industry has come a long way, and yet we still have so far to go – nowhere is that more evident than in digital water. This message resonated with me at the 2019 Smart Water Networks Forum (SWAN) conference in Miami last month, where I was struck by two things: First, the ongoing innovations in technologies like artificial intelligence and the digital twin. Second, the realization that we are still working to solve age-old water industry challenges, like overcoming entrenched cultural resistance to innovation and change within the municipal water sector.

This was the first time that SWAN– an international digital water industry association comprised of utilities, vendors, and industry experts– held its annual gathering in the U.S., a positive indicator for the market in and of itself. The diverse companies attending reinforce the interest in, and the need to mitigate water infrastructure issues through, digital transformation. Even so, we all wonder– when will the US catch up with other leading markets like the U.K. and Australia? At Bluefield, we already track 300+ digital water vendors of varying shapes and sizes, most of which have set their sights on the massive need for capital and operating efficiency gains in the U.S. municipal market.

While the issues remain complex, I believe that the industry itself is getting smarter. Here are my takeaways from the SWAN 2019 conference:

  • From Digital Twin to Artificial Intelligence, exciting new technologies will make water smarter. As Bluefield’s recent collaboration with Arcadis highlights, emerging technologies such as artificial intelligence and predictive analytics can empower utility leaders to address longstanding challenges, like affordability and resilience. There was no shortage of interest in these technologies at the conference, as our standing room-only intelligent water roundtable with Arcadis illustrated. Even so, the majority of the 70,000+ U.S. water & wastewater utilities are still in the early stages of their digital water journeys– establishing core collection and visualization platforms, like SCADA and GIS– and it may still be a number of years before the budding interest in more cutting-edge digital solutions is converted into tangible results at scale.

  • Investment in Smart Metering is driven by water scarcity, customer needs. Though smart meter vendors were not as prominent at this year’s SWAN conference as in past years, AMI and AMR deployments still account for the lion’s share of U.S. digital water project activity, as tracked through Bluefield’s project deployment database. This highlights the fact that water utilities’ journey towards greater digitalization is partly being driven by scarcity (e.g. California drought) and more focused needs for improved customer management. The challenge for smart meter vendors and other digital water solutions providers is to help utilities glean actionable insights into network performance and customer behavior from core metering data, and integrate this data into operating and planning systems and workflows.

  • People aren’t the problem, they are the solution. In poll after poll, conference participants confirmed that the roadblock to smart water technology adoption tends to be people. Many utility leaders have not been convinced that their needs are (or will) be addressed by a bulging list of vendors. Representative questions raised include: 

    1. Who (and what role) is the right person to address in a utility?
    2. What are tell-tale signs of a ‘progressive’ utility?
    3. How does one get past a siloed business case approach to recognizing more holistic value?

A cultural shift will be required at the leadership level to transition from traditional, siloed thinking toward a more integrated utility approach. It will also require a greater tolerance for controlled experimentation– and even for failure– to prepare for challenges, not just today, but those well over the horizon. 

At Bluefield, we have begun to evaluate questions of utility culture and innovation on a state-by-state basis to guide vendors and utilities in their strategic thinking. I presented our findings, Water Innovation Ecosystems: Facilitating the Digital Water Journey, to a well-attended panel of conference participants, also available in a recent Analyst Perspective.

Exhibit: Bluefield Rankings of Digital Water Innovation Ecosystems by State
 
 
  • Everyone must show ROI, water utilities are no different. There are a host of innovative utilities, in states with favorable market environments, that are driving smart water markets forward. Impressive presentations from progressive utilities such as WSSC, DC Water, and Seattle Public Utilities, often considered the “smart water” poster children, demonstrate the value of advanced analytics to their systems and customers. Smart water vendors and their more forward-thinking utility clients largely agree on the value of digital technologies, but they often find it difficult to craft clear business cases with quantifiable returns on investment to more skeptical prospects. 

These are big issues that the water industry is grappling with– some new, some old. At Bluefield, we provide our clients with an independent, holistic view of key issues, trends, challenges, and opportunities in water. With an independent perspective, and exclusive focus on water, we’re here to help usher the water industry into the future. Learn more at www.bluefieldresearch.com.


The below is an article which appeared on LinkedIn on June 5, 2019. View the full original article here.

Smart Water Hackathon 2019: “H2O - From Hacking 2 Opportunity”
Leveraging Young Talent and Water Use Data for Smart Water Management

By Shirely Ben-Dak, Marketing & Innovation Lead at SWAN - The Smart Water Networks Forum

 

On May 14th, 2019, 60 motivated students and young professionals from across the Greater Miami area (plus Finland!) came together at StartUP FIU to tackle a major water challenge faced by the local utility: “How can Miami-Dade County Water & Sewer Department (Miami-Dade WASD) continue to provide high quality drinking water to a growing population?”. Oh, and they had less than 12 hours to pull it off.

Armed with laptops, utility datasets, diverse teammates, and a strong passion for addressing a major public sector pain point, the participating hackers dived (water pun intended) right into their very first Smart Water Hackathon. Organized by the SWAN Forum, the leading global hub for the smart water and wastewater sectors, with support from Miami-Dade WASD, FIU and leading technology providers, and no shortage of brain food to keep spirits up, this unique and intensive event produced applicable outcomes for all involved.

Below are three key Hackathon takeaways and corresponding testimonials from participants, mentors and judges:

 

(1) Utility-Provided Datasets are Key Drivers for Producing Relevant Hackathon Challenges

First, an opening keynote from Miami-Dade WASD set the tone for understanding Miami-Dade County’s water resources, existing challenges, and available datasets covering water consumption patterns based on property types. Thanks to ongoing cooperation with key, local utility figures (special shoutout to Debbie Griner, Patrick Martin and Josenrique Cueto), the hackers were well equipped to direct their efforts on clearly stated problem statements - see Figure 1 below:

 

 

Figure 1. Source: Keynote Presentation at Smart Water Hackathon, Josenrique Cueto & Patrick Martin, Miami-Dade WASD

 

 

The derived problem statements were based on a collection of Miami-Dade WASD-supplied datasets that were compressed with the efforts of Dr. Susan Jacobson from FIU and team members from Code for Miami. The availability of this data helped ensure that participants moved away from assumptions that could distort their approaches, findings and ultimately the proposed solutions. Combined with additional open-source data available for the public via the City of Miami’s open data portal and open GIS portal, the participants began working on tackling the above questions.

 

 

Patrick Martin, Water Use Efficiency Manager at Miami-Dade WASD opens the Hackathon with an introductory keynote

 

 

 

Commenting on this process, one of the Hackathon winners, Jonne Huotari, Design Lead and Co-Founder of an emerging smart wastewater startup ‘Neuroflux’ and a student at the University of Helsinki, Finland, said: “This was a great overall process to be a part of. We were all supplied with good quality data, along with the ability to interact with industry leaders with proven experience in the field.” 

 

(2) Smart Water Management Requires Diverse Experiences and Backgrounds    

Hackathon participants came from diverse fields of study, including water and environmental management, journalism and new media, and computer science. This included representatives from across FIU, Miami-Dade College, Broward College and the winning team all the way from Finland. Thanks to a plethora of different skill-sets, and mentors with extensive years of data collection, visualization and management experience, the teams were able to present well-received final pitches to the utility and tech leaders within a very short timeframe.SWAN Council Member Scott Branum of Evoqua Water Technologies (the official Hackathon sponsor and one of the judges; pictured above) fittingly summarized the atmosphere: “The SWAN Hackathon was both very exciting and dynamic. It’s always encouraging to see over 50% female participants! Having such a large and diverse group of educational backgrounds shows that the importance of water quality and its sustainability impacts everyone. This event clearly highlighted data’s ability to evoke positive change on the planet’s most valuable resource - water!”


(3) Water Conservation Efforts Should Follow a Data-Supported Prioritization Plan

For Miami-Dade WASD, which provides drinking water and wastewater services for over 2.3 million residents across Miami-Dade County, determining where, when, and how to prioritize water conservation efforts is an arduous task.

However, with the advent of water metering, digital billing initiatives, and geospatial data, a better understanding of water consumption levels on a residential, industrial and commercial level becomes more feasible. This combination of data also proved fruitful for discovering patterns and ‘holes’ in terms of possible unmetered accounts such as sprinklers, golf courses and some shopping centers, as discovered by the second place team -see Figure 2 below:

 

Figure 2. Source: Runner-Up Presentation at Smart Water Hackathon, Ariel Auerbach, Mordechai Fridman and Yehuda Fridman (FIU/Broward College/Miami-Dade College)

 

 

Another team, comprised mainly of journalism and new media students, discovered (mainly through open-source data) that the Miami International Mall is one of the county’s principal water consumers, perhaps due to the presence of an on-site car wash. Meanwhile, another team of PhD students suggested that Miami-Dade WASD focus their water use efficiency plans according to the following order, based on water consumption levels: (1) hospitals; (2) laundromats; and (3) apartments. They also added that the utility must be prepared to address extreme weather events, which may impact water consumption trends. See Figure 3 below depicting a sharp consumption change in 2017, surrounding the time a hurricane hit the region:

 

Figure 3. Source: Team #5, Presentation at Smart Water Hackathon, Vivek Verma, Sumit R. Zanje, Aditia Rojali, Linlong Bian and Dogukan Ozecik (FIU)

 

 

Commenting on the above findings, Debbie Griner, Resilience Manager at Miami-Dade WASD, said: “These teams were able to analyze a large and cumbersome water management datasets and create insightful outcomes that allowed us to better comprehend how different types of consumers impact water use. We learned a great deal from this process and are eager to again use the hackathon concept in the future to analyze data and to shift our challenges to data-driven solutions.”

To sum up, the fast-paced 1st Annual Smart Water Hackathon succeeded in producing relevant findings for Miami-Dade WASD. This was the result of a process that involved access to utility datasets, accurately stated problem statements, mentorship to help extract more value from the data, and finally, a series of high level presentations that clearly articulated and visualized the opportunities for more effective water consumption strategies.

 

Hackathon Results

First place (pictured below): Tomi Lukarinen & Jonne Huotari (HSY/Neuroflux/ University of Finland)

The winning team from Finland examined the mean water usage per zip code/area and biggest single water users to help prioritize utility decision-making. Using water consumption, GIS and billing data, they developed a mapping tool showing water consumption levels (from a spatial distribution perspective) accordingly to locations and added a color-coded dashboard to assist with monitoring and to better showcase consumption behaviors. View their interactive map here

 

 

1st place team from Finland, together with Hackathon judges: Scott Branum (Evoqua Water Technologies), Francisco Martinez (Miami-Dade WASD) & Debbie Griner (Miami-Dade WASD)

 

 

 

 

The runners-up determined that future water conservation efforts should focus on those properties without installed meters, as this will impact water consumption levels. Their approach was described by Mordechai Fridman of Broward College: “One of the ways we identified possible unmetered accounts was by finding property locations/IDs that were present in the GIS data, but that did not appear in the utility provided data”.

Second place (pictured below): Ariel Auerbach (FIU), Mordechai Fridman (Broward College) & Yehuda Fridman (Miami-Dade College)

 

Acknowledgements:

A huge thank you to the following individuals and organizations for their active involvement surrounding this 1st Annual Smart Water Hackathon:

Read more about SWAN’s Young Professional arm, Rising Smart Water Professionals (RiSWP) here: https://www.swan-forum.com/riswp/

For more information about this Hackathon or other SWAN-related initiatives, please email shirley@swan-forum.com.


The below is excerpted from an article which appeared on the Aquatech website on January 24, 2019 and featured smart water experts including SWAN Member, Vitens and SWAN Executive Director, Amir Cahn. View the full original article here.

What Will 2019 Hold For The Global Water Market?


Despite kickstarting with Brexit uncertainty, 2019 promises to be another exciting year for the global water market. From microplastics and smart networks, through to a golden era for wastewater in emerging countries, predictions for this year are both ambitious and exciting. We speak to global water experts, from associations, to water utilities and engineering companies, to find out what they believe will be the biggest challenges and opportunities over the next 12 months.

Navigating the Digital Bumpy Road - Jan Gooijer, Vitens

According to Jan Gooijer, Innovation Manager at leading Dutch utility, Vitens, two major trends will shape 2019 when it comes to digitalisation in the utility sector. We have seen many developments in data science, technology and sensoring in the past years. Therefore, there is a lot of evidence that data will revolutionise the way utilities operate. However, I think that 2019 will be a turning point in two ways.

First, I expect that 2019 will reveal a sharp division between utilities that will indeed transform through digitalisation, and utilities that will stay behind and are unable to follow.

The reason is that this transformation requires leadership. Digital leadership is not just another buzzword, but indeed key for success. Data driven is not just a beautiful vision: implementation is hard work and brings considerable challenges in budget, time and people. It requires allowing chaos to be part of the transformation and a clear vision of where the bumpy road needs to lead. That is a challenge to leadership skills that is new to a sector that has lived in comfort for so long.

The second trend that I observe is that data scientists will start to develop their own agenda within utilities. Until now, data science has solved many of the data issues colleagues bring up as if they are really data servants instead of data scientists. This will change for the simple reason that it is the only way to unlock the full potential of data and digital.

Only by allowing data scientists to, at least partly, set the agenda themselves, they will be able to lead us into the unknown land behind the horizon. There is a digital revolution going on and we need the experts to play their part in digital leadership if we are serious.

Artificial Intelligence Possibilities - Amir Cahn, The SWAN Forum

Amir Cahn, Executive Director of Smart Water Networks Forum (SWAN), tells us that they have witnessed the wide adoption of many new and exciting, data-driven solutions and innovative utility management strategies. Below, are three change agents, which will transform how water utilities meet their global water challenges in 2019.

DaaS gaining momentum: Through the Data-as-a-Service (DaaS) business model, a solution provider oversees the operation, service, and maintenance of a certain technology (e.g. a water quality sensor) while a utility only pays for the data it wishes to receive. Thus, utilities face no sunk costs for hardware, data collection, storage or support and gain more reliable and efficient processing. DaaS is now being successfully implemented in wastewater collection systems to detect water quality incidents, industrial pollution, and combined sewage overflows in real-time.

Expanding AI applications: Artificial intelligence (AI) offers water utilities new ways to find patterns and hidden insights to make informed, proactive decisions. Today, common AI water applications include pipe condition assessment, demand forecasting, energy optimisation, and predictive modelling. However, there are a wide range of other AI possibilities. For example, AI can now assist stormwater operators to reduce hours of CCTV pipeline inspection footage to a few minutes through automatic analysis. Virtual agents and chatbots can fully automate customer service and drones can even be trained to automatically identify asset defects and predict failures without interrupting operations.

Increased global collaboration: The technology solutions are here, with more and more cities realising the benefits of creating smart, resilient systems; however, global water stakeholders need to collaborate more effectively. Through regional SWAN Alliances in Europe, North America, Asia-Pacific, and India, global industry leaders are sharing their current challenges and best technology and management practices to advance the water sector.


Digital Utility Transformation: Fueled by Integration, Leadership, and Customer Engagement
Key Takeaways from the SWAN Workshop at WWEM Telford 2018

By Shirley Ben-Dak, Marketing & Innovation Lead at the SWAN Forum


Last week, on Nov. 21st, 2018, smart water industry leaders gathered in Telford to explore the future of water and IT during the WWEM SWAN Workshop. This half-day event featured engaging sessions on the role of digital solutions in addressing water leakage as well as source-to-source smart water management. To close out the session were interactive roundtable discussions led by senior utility experts from Anglian Water, Bristol Water, South West Water, Southern Water and Welsh Water.

While a number of key trends and topics were explored, three general themes recurred throughout the presentations and open discussions:

(1) Holistic & Integrated Smart Water Management is Key

Phil Tomlinson from Metasphere captured this theme perfectly with a strong statement made at the start of his presentation: “When looking at IoT, we really should be thinking of it as the Integration of Things”.

While there is an array of both existing and new smart water solutions on the horizon, many fail to step outside the comfort zone of stand-alone systems. Today, an increasing number of utilities are steering away from proprietary software with no clear exit paths. According to Richard Foster of WRc, “We’re not looking at stand-alone systems, but as overall management systems.”

From the solution provider perspective, being able to pivot and adapt to customer and utility needs has grown in its importance. For instance, David Kenny from i2O discussed an open, agile-led and collaborative approach to collective feedback directly from utilities, which ultimately led to internal product changes (see figure below). Meanwhile, Tom Woolley from Aquasuite - Royal HaskoningDHV, importantly mentioned the concept of AI fatigue – “We need to bring such innovative concepts down to the true interface and value, not merely pointing to a cloud of data”. This type of mindset must increasingly be adopted, especially as the volume of data continues to rise.

Slide from David Kenny’s Presentation, WWEM 2018


(2) Strong Leadership to Determine Utility Innovation Roadmaps


Another key theme that emerged from both the panel presentations and the roundtable discussions was the need for strong utility leadership. In the roundtable on ‘What is the best way to bring about utility culture change?’ led by David Smith, Asset Management and Production Director at Bristol Water, the diverse table participants discussed the vital role utility leaders must play in determining company values, establishing an internal culture that is based on those values, and finally, developing a roadmap for implementation based on clear measurement indicators and enabling mechanism to gather input from all key stakeholders.

One interesting discussion point surrounding the challenge of addressing digital innovation barriers involved understanding how the public sector can best attract qualified young talent. Matthew Hughes, Optimisation Manager at Anglian Water, who led one of the roundtables, highlighted Anglian’s unique initiative to establish an Advisory Board made up of Young Professionals and future water leaders, with direct communication channels to the Executive Team.

Another creative idea, suggested by Mohammed Shehu Sambo, a final year civil and environmental engineering student from the University of Surrey, discussed university alumni working in utilities to mentor and meet with potential students, whether in the form of internships/apprentice opportunities. With such or similar efforts, “young professionals will start their roles with both a passion and understanding about internal systems and processes.”

Roundtable discussion at WWEM 2018 


(3) Constant Customer Support at the Forefront of Digital Utility Transformation

In what was one of the most talked about agenda items among all workshop participants, the third key theme stressed the need for utilities to keep the customer in mind during every step of the digital transformation process.

According to Jez Downs, Supply System Strategy Manager of Integrated Planning at Southern Water, “smart networks can help define useful metrics, how we are impacting our customers and the environment.” He further stressed the need for analytics-based software to enable utilities to pre-warn their customers of any potential supply interruptions and remotely reducing network pressure to reduce the likelihood of an event. Additionally, in his roundtable on “What role can SMART networks play in the management of major operational incidents?’, Martin Doherty, Head of Service Improvement at South West Water, mentioned the need for critical stakeholders, especially operational staff, to always focus on how customers may be affected by the introduction of new technologies.

Young professionals can also directly contribute to this space. Most have grown up in the age where access to and sharing of information is immediate. The same concept of immediacy can and should be directly applied to the water sector, in the form of providing constant customer support and user-friendly mechanisms to collect feedback. For instance, in the case of a disruption to the water supply, a customer should be updated right away at the latest, with an emphasis placed on sending alerts prior to supply disturbances. Such high levels of customer service can help ensure better rate settings and consequently encourage customers to manage their own consumption patterns.

To quickly recap, effective digital transformation at the intersection of water and IT rests on a number of key pillars: (1) Integration of data, tools and management systems; (2) Strong utility leadership and value & culture-based agenda setting; and (3) Consistent customer support and engagement. When all three work in harmony, the smart water sector as a whole can realise tangible benefits for the betterment of all stakeholders.

View Workshop presentations and photos here.

Any feedback or questions, please email shirley@swan-forum.com


Canadian Water: From Street-Smarts to Smart Networks
Key Takeaways from the CWWA Conference SWAN NA Alliance Workshop

By Emma Weisbord, SDG6 Advisor to the ixo Foundation

Blog published November 25, 2018 (Slide from Graham Nasby's Presentation)


My interest in digital transformation and the data revolution in the water sector led me to attend the recent SWAN Workshop in Montreal, which explored the potential for data-driven, smart water solutions to digitally transform Canadian utility operations and management strategies. The themes of the workshop related to change management, building smart systems on existing institutional knowledge, and collecting good data in sufficient quantities.

The Workshop started with Montreal’s Guy Arnould describing the digital transformation of the city’s wastewater treatment plant (pictured below), which serves 2 million citizens and accounts for around half of the province’s total wastewater treatment. In 2015, the city experienced “Flushgate” when nearly 5 billion litres of untreated wastewater were released into the St-Lawrence river.

 

The public outcry from citizens was a wake-up call to politicians and utility managers who continue to explore tangible solutions like smart water systems. While the hype around smart water systems may raise expectations, the reality remains exciting and there is much to learn from utilities that are on a digital transformation journey.

The biggest challenge in the digital journey is change management, and utilities need to understand the potential internal barriers to digital innovation. The challenges of digitisation in Montreal were echoed and expanded upon by other workshop participants from across Canada, and advice was shared over the course of the day by experienced water leaders.

A few key takeaways resounded with me. The first takeaway is that our smart water systems need to be more than just digitally smart - they need to be “street-smart”. As senior water professionals retire, the sector risks losing decades worth of street-smarts that comes from valuable experience, institutional knowledge and practical know-how. A “street-smart” smart water system could be achieved by integrating the institutional knowledge of water professionals acquired over years of experience into the smart water systems that we design, build, and implement. This is achievable by bringing the relevant stakeholders into the digital journey from the beginning and allowing time for iteration and collaboration to collect their input.

My second takeaway was that a street-wise smart water system prioritises the customer’s best interest. Reid Campbell from Halifax Water described his utility as “data-driven” and explained that their digital transformation strategy was entirely set by a customer service plan (shown in the IT Strategic Plan below). By improving monitoring of water mains, integrating advanced metering infrastructure and increasing data collection points, Halifax Water has improved their customer service, ensured better rate setting and enabled customers to manage their own consumption. The focus on the end user throughout the digital transformation process was key to a successful outcome.


The third takeaway is that our smart water systems need to be running on good data. As water professionals, we’re used to dealing in waste and so the popular tech phrase “garbage in, garbage out” should resound strongly with us. We need to ensure that the data upon which our decisions are made are solid, validated, and interoperable. Susan Ancel of EPCOR spoke about the importance of regularly “dusting off the data”, meaning periodically monitoring and running quality checks to ensure that what is being collected remains relevant to its use and ensuring that it isn’t stuck in silos. By maintaining quality assurance of data and ensuring that the user interface allows for good interpretation, then utilities are able to contribute to urban water management by making good decisions that are data-driven (see chart below).


Human centered design can be relevant in ensuring that data collection and interfaces such as dashboards are designed with the end user in mind and with an understanding of what the human brain can process.

My final takeaway is about managing the quantity of data, not just the quality. The Kamstrup-led roundtable  discussed how advanced metering infrastructure is not about the meter readings, but about the data, which in sufficient quantity can be used for hydraulic modeling, resolving billing disputes, leak detection and rate setting. Sufficient quantity of good data can also be used for machine learning and lead to iterative, self-improving smart systems. High quality and quantity of data and the subsequent analytics are the main driving force of changes in water utilities, according to the experience of the City of Guelph’s Graham Nasby. 

For utilities wondering how to start their smart water journey, the advice was to start by focusing on the data which will ultimately drive innovation. Utilities should look at the silos that exist in their company structures and establish multi-disciplinary innovation committees and data stewards who can champion interoperability of data and create smart systems that are useful now and in the future as needs and use cases evolve. As utilities increasingly work on new technology, they need to involve young water professionals who have new and valuable ideas and will be taking over the sector in the next few years. Water utilities that collaboratively develop street-wise smart water systems will become global leaders in resilient, sustainable and data-driven urban water management.


SWAN Montreal Workshop presentations can be found here.

Emma can be contacted by email here or on Twitter @emmaweisbord


SWAN 2018 Conference Takeaways: Meeting Industry Challenges Through Transformation, Actionable Data, & Collaboration

By Liora Hostyk, Research Analyst, SWAN Forum

 

 

The blog below is reposted from a LinkedIn article published on June 5, 2018. View the original post here.


I had the pleasure of attending the recent Annual Smart Water Networks (SWAN) Forum 2018 Conference held in Barcelona, May 21-22. Over the course of the two-day event, which drew 230 attendees from across 26 diverse counties, panelists and keynote speakers covered a wide range of topics from water quality monitoring to smart citizenship. Some general themes recurred throughout, specifically: (I) improving perception of utilities and utility-customer relationships; (II) utility transformation, and (III) data overload & enhanced data management.

 

I. Improving Utility Perception

The importance of improving the utility-customer relationship came up in multiple panels and roundtable discussions, not only in relation to how customers perceive their local utility company but in terms of communication and customer engagement. In his keynote, Javier Fernandez of Canal de Isabel II stated that water utilities need to transition from the image of “the lovable grandma that is kind and charming, but outdated” to the “connected youngster.” Concerns about branding must be backed up with innovative actions, and communicating to the customer will improve imaging overall.

Another interesting point raised was that customer engagement with a utility is traditionally in response to a problem, a reactive (versus proactive) response. Travis Smith of Sensus pointed out that utilities should be discerning in their messaging to clients as there is more concern and relevant engagement when the information actually affects their wallet. However, as Carlos Campos of SUEZ Advanced Solutions noted in his opening keynote, utilities should be interacting with their customers beyond just sending an invoice or responding to a leak; it is mutually beneficial when customer experience as a whole is enhanced. Campos also discussed how customer relation improvements can and should be quantified as part of the value added from smart modifications (see figure below).

 

 

 (Source: SWAN 2018 Keynote Presentation, Carlos Campos, SUEZ)

 

Essentially, how customers perceive their utility and the quality of the water provided is a matter of language, education, and regulation. For instance, Dr. Jiawei Ng from PUB Singapore made the important point that in Singapore, the term “used water” is referred to as “wastewater” to reinforce that water is a reusable resource rather than a single-use waste. Citing his own experience, Lee Pope of Fayette County Water System pointed out that in the USA, public drinking sources are regulated by the Environmental Protection Agency and are therefore held to much stricter standards than bottled water, which is regulated by the US Food and Drug Administration. Given that utilities provide vital services which are often invisible to the customer, sharing more information about company activities and driving local awareness regarding the cleanliness and quality of drinking water is a must.

 

II. Utility Transformation

One of the principal challenges for utilities is the daunting process of transformation, often digitally-powered. George Hawkins of Moonshot, LLC / XPV Water Partners (and formerly DC Water) offered strategic advice for utility companies beginning the process of smart adaptations, including involving all stakeholders in the discussion via a “participatory approach” and leveraging indicators to measure growth and change.

Another takeaway from the many discussions about developing smart water networks was the importance of leveraging existing infrastructure, as transformation does not necessarily require an entire system overhaul. Solution providers such as EmNet gave concrete ways to update legacy wastewater infrastructure, including real-time decision support systems. Also discussed was the opportunity to mutualise infrastructure strategies and solutions with other services (such as gas or power) as a form of collaboration that advances all sectors.

An exciting new way utilities can transform themselves and innovate their companies is through blockchain. In her keynote, Anna Poberezhna of Smart4tech discussed the many opportunities of the water sector to utilise blockchain and unique business models in order to create better transactions and improve accountability in their organisational processes (see figure below). Using such a digital platform not only improves trust between the customer and the company, but using blockchain as a data management tool can also help improve record-keeping and streamline reporting to regulators.

(Source: SWAN 2018 Keynote Presentation, Anna Poberezhna, Smart4tech)

 

III. Reassessing Data Management

One main lesson drawn from SWAN 2018 is that smart data tools in and of themselves are insufficient – rather, proper management and data communication are a must. As was brought up during the WatEner roundtable discussion, an overload of unnecessary data can flood the system and cause overreacting operational actions.

Additionally, a key takeaway from the s::can-led roundtable discussion was the growing market for the service of data rather than data ownership, and the challenges and opportunities that arise from using a service-economy model for data. With this in mind, the Data-as-a-Service (DaaS) model provides various business possibilities as well as opportunities for collaboration across the private and public sectors.

In the case of utility transformation, as discussed earlier, there is an ever-increasing need to view and manage data as an asset. Peter Jackson of Southern Water described effective aspects of formulating a company data strategy, including appointing an internal Chief Data Officer and the need to discuss ways to transform people, processes, and technology; and reporting on progress in order to remain accountable. He also highlighted the necessity of transforming data communication; beyond data scientists, there is a need for “data storytellers” who can interpret and relay the underlying information both within the company and to the public. Such efforts can lead to actionable results and help drive data-based decision making.

In another insightful panel presentation, David Lynch of Klir made the comparison of the current state of water management to early customer relationship management (CRM) systems. Just as CRM transitioned from rolodexes to spreadsheets of data, the water field has gone through a similar transition, but has not yet reached the next step as CRM has with automation and full data integration. In the water management sector, there are currently many structured data systems but no true system that integrates these “signals” into a focused mission; such integration is the next step in the evolution of smart water network management.

 

Conclusion: Industry Cooperation and Collaboration

The importance of collaboration and industry synthesis came up across many discussions, from integration on a system level to cooperation between various partners. During her keynote, Beverly Rider of Hitachi discussed such challenges faced by utility companies, but also the importance of considering the entirety of the ecosystem during water management, not just on the quality and quantity of the water. Joan Carles Guardiola Herrero of Global Omnium discussed their approach to fostering innovation in the water sector, including their contribution to a European consortium (SH2) bringing together utilities, universities, and tech companies together with the mission of consumer engagement and awareness. Another concrete concrete example of cooperation among stakeholders was given by Daisee Aguilera, the Councillor for the Environment on the Formentera Island Council. The Alliance for Sustainable Water Management was created in Formentera (which works actively with FCC Aqualia) with representatives from public institutions, private entities, social and agricultural sectors – all with the common goal of integrated freshwater islands management.

In terms of some insightful figures, when polled by Vitens, 78% of SWAN attendees said they believed innovation is best done as a collaborative effort with external partners (see figure below). Cooperation remains a key element not only of company transformation but to truly advance the water sector into a smarter future. Interestingly, when polled, the majority of Conference attendees stated that social innovation is currently more important than technological innovation (figure below). This is interesting because it highlights the importance of the customer role and behavior beyond the smart innovations the company might provide.

 

  (Source: SWAN 2018 Conference Mobile App Poll)

 

Lastly, while planning for future developments in the field, it is important to keep in mind where the industry is now and where it is headed. Pat Stevens of ADS Environmental Services spoke during his panel about three decades of technology adoption from (1) understanding (2) early adopter and (3) the standard phase. When polled, a majority of respondents indicated that the water sector is currently in the decade of “early adopter”, and that in a decade’s time, the industry will be in the “standard” adoption phase.

For smart tools to become a standard quickly, partnerships and open communication between all stakeholders will be required. Cooperation and coordination within the industry are key for this transformation, with support from proper data management and enhanced customer engagement.

 

SWAN Members can view all SWAN 2018 Conference materials and presentations here.


2018 – The Year of Smart Wastewater

By Sam Konstantinov, Research Analyst, SWAN Forum

smart wastewater

                                                                                                                         Published January 2, 2018

 

2017 was a transformative year for the smart wastewater sector with major industry advancements such as new ways to detect and prevent combined sewer overflows (CSOs), the advent of a smart wastewater pumping system, and the emergence of innovative business models such as data-as-a-service – all bound to gain more traction in 2018.

 

In 2017, SWAN conducted an Urban Sewershed Monitoring Survey on behalf CH2M and WE&RF to analyse the existing challenges, capabilities, and state of implementing sensor networks in urban sewersheds (sewer collection systems). The groundbreaking study was completed by 20 utilities and 20 technology providers, with the below chart illustrating how each group ranked the most important uses for sensor technology in wastewater networks.

SWAN Survey

Source: SWAN, CH2M and WE&RF Sewershed Monitoring Survey, 2017

 

These results demonstrate a growing interest in advanced sensor applications in wastewater solutions. Both utilities and technology providers indicated the most important uses for sensors were for an early warning system, followed by compliance monitoring, and real-time control.

Fueled by this increased interest, SWAN and industry leaders have identified the following smart wastewater trends likely to be at the forefront of 2018 discussions:

 

Detecting and Preventing CSOs

Wastewater utilities are increasingly implementing technologies to ensure compliance and addressing such challenges as inflow and infiltration (I&I) and combined sewage overflows (CSOs). During rain events, stormwater overwhelms the capacity of a combined sewer systems resulting in harmful overflow events. Companies such as SmartCover Systems and ADS provide solutions to detect and reduce overflows by utilising real-time flow and weather data, and similarly Eastech uses sensors for micro I&I detection. Data-driven solutions to address CSO’s will remain a priority for utilities in 2018, as these approaches are proven to be more effective and efficient.

 

Real-Time Network Control

Employing EmNet’s real-time control solution, the City of South Bend, Indiana was able to effectively leverage data analytics to automatically control valves and optimise their wastewater system. EmNet’s system intelligently and dynamically adapts to changing storm conditions to maximise storage and conveyance. This enabled South Bend to reduce overflow events from a yearly average of 27 to only 1. Digital solutions can also be used to evaluate and finance infrastructure initiatives to reduce CSOs.

 

Funding Green Infrastructure 

Inadequate stormwater management practices have directly contributed to higher CSO volumes. Since most infrastructure is not permeable, stormwater is often funneled through large areas into centralised locations, which then deliver large runoff volumes into combined sewer systems. In a progressive move, DC Water was able to finance its permeable surface infrastructure initiative through an Environmental Impact Bond and use data-driven flow models to evaluate the impact of permeable surface infrastructure. This allowed DC Water to avoid a $3.3 million contingent payment. In addition to reducing CSO volumes, data oriented management practices can increase energy efficiency within wastewater networks.

 

Maximising Pump Efficiency

In 2017, DC Water introduced Xylem’s smart wastewater pump system. This interconnected system is expected to produce energy savings of up to 70% compared to a conventional pumping system and reduce inventory by up to 80% due to flexible performance. Emerging business models in the smart wastewater market also promise to create new partnerships and initiatives between technology providers and utilities.

 

Implementing the DaaS Business Model 

One of the greatest challenges in integrating new digital wastewater technologies is convincing utilities to take on the risks of emerging technology solutions. The data-as-a-service (DaaS) business model addresses this challenge by shifting project risks onto technology providers. In this scenario, utilities only pay for the final data they receive and do not incur any technology related costs. This model is already proving successful in India through s::can’s Ganges River project. Using water quality monitoring stations measuring 17 different parameters, s::can is able to register live spikes in hazardous chemicals.

 

Looking Towards 2018

Trend-setting, progressive utilities like the City of South Bend and DC Water are laying down the groundwork for continued integration of smart wastewater solutions in 2018. Challenges in controlling CSO events, increasing energy efficiency, and ensuring effective implementation will need to be met with new digital solutions and innovative business models.

To learn more about the latest smart water and wastewater trends, challenges, and solutions, SWAN invites everyone to the 2018 SWAN Annual Conference in Barcelona. Join us May 21-22 to learn about how smart water can meet tomorrow’s challenges today.


The below blog is reposted from an article which appeared in Automation World on December 21, 2017. View the original article here.

 
 
 

To Embrace Digital, Water Needs to Tackle Fundamentals 

By Aaron Hand, Executive Editor, Automation World

 
 

David St. Pierre, with a background in process control, moved from oil refineries to water utilities in 1986. The difference was night and day. More than 30 years later, he still sees a need for the water industry to understand the basics.

 
 
 
swan17_davidstpierre
 
 

Published December 21, 2017

 
 
 

In the early days of David St. Pierre’s career in process control, he had plenty of exposure to old pneumatic systems and single-loop controllers—by the late 1970s in oil refining, there were banks and banks of single-loop controllers. Not unlike what control software does today in a digital format, those controllers had to be precise. “You want it to work,” St. Pierre says. “If it fails, you blow up the town.”

But since moving over to water in 1986, St. Pierre has been amazed at what is lacking in the automation of the industry. “The difference between making gasoline and controlling water is night and day. It was like taking a step back in time,” he said. Part of the reason for the difference, he contends, is that water is inherently less dangerous than oil and gas. “Water isn’t going to blow up the town. There’s just not this real urgency to get it right.”

The automation advances that had taken place in the oil and gas industry were missing in water. Now, as executive director of the Metropolitan Water Reclamation District of Greater Chicago (MWRDGC) and vice president of the National Association of Clean Water Agencies (NACWA), St. Pierre sees obstacles in three main areas as the water industry tries to make its way into the digital world: automation, system health and labor.

“We have to figure out how to implement true automation in water,” St. Pierre urged industry professionals last month. He was keynoting a day-long workshop in Chicago called Modernizing North American Water Systems in the Digital Age.“ In each city that I go into, they really aren’t applying normal control strategies, which have been tried and true for ages. I see programmers that are starting from scratch on a blank sheet of paper, trying to recreate control systems that already exist in the systems that they’re buying.”

The water industry needs to get past the idea that it has to do things differently than other industries, and instead embrace just automation fundamentals. “We think we’re unique. It’s simply not true,” St. Pierre said. “We need just simple process control implementation—using the physics that you understand and applying it to a system. We need to get to the fundamentals. We need to apply the tried and true.”

The second set of obstacles come in the area of system health. Though water utilities have a network of systems that should be able to point to problems like lost water pressure in a fire hydrant, for example, the information isn’t getting where it needs to go.

In a water system in St. Louis, St. Pierre encountered a computerized maintenance management system (CMMS) that was so complicated, it was of little use. “We must’ve had 50 different codes to tell you what we were doing out in the field,” he recalled. “All you had was garbage going in and garbage coming out. There was no way you were going to utilize that system for information management.”

They set about figuring out what information was truly valuable. “I have to get good information out so it means something to me and helps me advance forward,” St. Pierre said. “We decided we needed three resolution codes instead of 50.”

Labor management is a huge aspect of keeping water utilities running efficiently that needs to be brought under control, St. Pierre also said. “Almost 70 percent of what I spend a year is labor,” he said. “Do you think it’s kind of important to figure how to manage that labor and get value out of that labor? It probably is.”

Using St. Louis as an example again, St. Pierre referenced the pump station group, made up primarily of mechanics and instrumentation folks. “The mechanics had never worked on a pump,” he explained. “Instead, what were we doing? We were hauling out failed pumps—failures upon failures. It was a very expensive way to do business. If you drove your car that way, you wouldn’t want a car. It’s not really asset management.” So he sent the mechanics to pump school.

Many water utilities simply need to implement basic asset management, St. Pierre insisted. “The equipment we have in water is pretty simple equipment. It’s nothing unique—it’s compressors and blowers and pumps. They should have a standard timeframe reference,” he said. Utilizing predictive sensors correctly would also go a long way, he added.

“There is such a need in water for the fundamentals. Once you get those fundamentals down, you can start becoming the excellent agencies that we want to be,” St. Pierre concluded. “If we want to accelerate the advancement of digitalization in water, it’s really all about getting the fundamentals right.”


The below blog is reposted from an article which appeared in Water Online on July 10, 2017. View the original article here.

 
 
 

Smart Water Questions Answered

By Kevin Westerling, Chief Editor, Water Online and Will Maize, Senior Analyst, Bluefield Research

 
 
 
 

                                   Published July 10, 2017

 
 
 

A smart-water expert details the impact of data and analytics on the water sector.

It may be time to shed the quotes around the term “smart water.” When it was the water industry’s pipedream, so to speak, the buzzword-y connotation was appropriate. But smart water technology is now fully functional and greatly effective, at least where implemented, with a trajectory that is both ascending and inevitable. Or, as market intelligence firm Bluefield Research contends, smart water is here to stay.

The prediction for profound impact comes from the many benefits, mostly geared toward improved efficiency, enabled by smart water technology. And while the transition to a proven, more-efficient water management system makes common sense, it is still far from commonplace among utilities. Smart water is here to stay, perhaps, but it nevertheless has a long way to go.

So, in these still-nascent stages of a new era, you may have a number of questions about smart water technology basics, capabilities, operation, and obstacles. The following Q&A — a conversation with Will Maize, Bluefield’s senior analyst covering smart water applications and emerging technologies — provides some answers.

 

How do you define smart water?

There are a lot of varying definitions out there, but we define smart water as a group of emerging technology solutions that help water managers operate more effectively. These solutions harness state-of-the-art hardware and software to provide increasing levels of system intelligence, visibility, automation and control, and customer service.

At Bluefield, we take a holistic approach to consider the entire spectrum of smart water solutions — from hardware (e.g., smart meters) to software solutions (e.g., data platforms). The aim is to improve customer and network management through new technologies, data-driven platforms, and more advanced business models.

To give you an idea of scale, Bluefield forecasts the U.S. municipal water sector’s spend to surpass $20 billion on software, data, and analytics solutions over the next decade. It’s still early, so this could scale quickly.

 

What is the problem that smart water solutions are attempting to solve?

Historically, utilities have been hobbled by their inability to generate actionable insights from disparate network and water usage data, but this is changing with more advanced data management and cloud-based solutions. Water utilities have been stereotyped in the past as stodgy and never-changing, but this no longer holds true; smart water is bringing the water industry into the 21st century as companies look to adopt these cutting-edge solutions.

By leveraging Big Data, analytics, and the Internet of Things (IoT), key players in the water sector are proactively innovating to help solve issues of water scarcity and address aging water infrastructure. Smart technologies help water utilities be more proactive vs reactive. For example:

  • Using imaging to inspect corroding pipes, enabling predictive maintenance;
  • Analyzing data in real time to identify leaks that would otherwise go unnoticed; and
  • Leveraging software to help utilities and consumers track their home water usage.
 
 
 
u_ssmartwaterforecasts
 
 
 

 

Why is the industry turning to data and analytics now?

There are a number of factors that are leading to somewhat of a perfect storm. First, there is more pressure than ever on utilities to do more with less. Consumers are pushing back on rising water rates and expecting better customer service.

Utilities and municipalities find themselves facing mounting financial constraints driven by falling water revenues and pressure to address aging infrastructure. Approximately 50 percent of U.S. infrastructure has been evaluated as poor to beyond planned life, according to latest EPA reports. And companies are looking for new, innovative ways to address issues such as aging pipes and leakage management. This has sparked an uptick in demand for innovative solutions to more cost-effectively manage billing and customer management, leakage rates, and energy consumption.

Water loss is a big concern, and states are attempting to increase regulations in this area. Water scarcity events have influenced the development of state-driven regulation targeting water loss.

We have seen great advancements in the areas of Big Data and IoT, leading other industries, such as energy, to adopt these technologies. With pressing issues mounting, the water industry is now taking advantage as well.

 

Can smart water technologies make a difference?

The short answer is yes. The results have been significant. In some cases, smart water solutions have halved nonrevenue water — leaks and billing errors — and reduced energy consumption from 20 to 40 percent. As much as 30 percent of water utility operating expenditures can be improved almost immediately through more dynamic and real-time system monitoring, according to Bluefield’s analysis.

 

What are the fastest-growing segments?

Often the first step in U.S. utilities’ smart water journey is through smart water meters —automatic meter reading (AMR) or advanced metering infrastructure (AMI). Meters will continue to represent the lion’s share of forecasted expenditures at 82 percent from 2017 through 2026. The challenge, however, is that the data collected from these meters — if collected at all — needs to be managed and analyzed. This is where we see big improvements and opportunity.

We are also seeing huge potential in two other areas: asset intelligence and leakage management. We predict that asset intelligence, including pipeline monitoring, asset condition inspections, and asset management will emerge as a key smart water segment as utilities seek efficiency under mounting pressure of operating and capital replacement budget stress. Over $2.7 billion will be directed towards asset condition assessment and pipeline monitoring through 2026, according to our analysis. Given the state of municipal infrastructure, there is a wealth of low-hanging opportunities for improvements.

At the same time, operating expenditures on leakage management will total $1 billion through 2025 as smart solutions for leakage management, driven by fixed-network acoustic technologies, satellite leak detection, and improved real-time network intelligence, capture increased market share.

 

Which companies or utilities are leading the charge?

Smart water is bringing a wide range of new companies into the water industry from multiple sectors and value chain positions, which is fitting for an industry opening itself up to the massive potential.

Seizing on this burgeoning demand for solutions is an outside group of venture-backed startups seeking to leverage their data expertise, much of which draws from other industry applications. These data and analytics companies are looking to integrate disparate sources of data to optimize networks, track water quality, and generate insights for asset performance management. Their primary challenge, however, will be overcoming a credibility gap with demonstrated pilot projects and buy-in from municipal utilities. These companies are not new to data and IoT, but many are new to the water industry.

Since 2014, 42 acquisitions in smart water have exceeded $8.2 billion, reinforcing the growing confidence larger water companies are placing on water data and analytics as growth opportunities. We are seeing more diversified players like Honeywell, Trimble, and Xylem moving deeper into the sector.

Early-adopting utilities, including American Water and East Bay Municipal Water District, are leading the shift towards smart water technology adoption. Market leaders, including Mueller and Itron, have moved downstream into communications, data management, and analytics, while recent market entries via acquisition will further reshape the competitive landscape.

As a result, more than 40 companies in the U.S. are positioning to deploy state-of-the-art solutions to enable more advanced levels of system intelligence, real-time network visibility, energy efficiency, and customer management.

We can also look to Europe as a model. European utilities are really at the forefront in driving this space — in the areas of energy efficiency, smart meters, and leakage management.

 

What hurdles does the water industry face in adopting smart water technologies?

Culture. This is killer to innovation and improvements. For so long, out of sight, out of mind was the modus operandi for utility operators. Today, however, a combination of drought, water quality events in Flint and Pittsburgh, and customer expectations for real-time data and knowledge are increasing the demands on the utilities.

The solutions are not new, and water utilities also face some of the hurdles that other industries are confronting when it comes to Big Data and IoT. They must address key questions such as who owns the data — the utility, the homeowner, or the technology provider? What defines a smart utility? Which of these startups will be around in the next three to five years?

There are issues to be worked out, but we are not that far off from consumers being able to see water usage alongside electricity usage — all from their smartphones.

 

What would you say to skeptics who say smart water is just a fad?

I would say that just a few years ago there was only a handful of hardware players. But now the market looks entirely different. We are seeing larger, diversified companies enter the fray, utilities reshaping their mindset, and Silicon Valley applying data expertise. This combination has huge potential to change the way the U.S. water industry works.

Smart water is a big deal for the water industry and is here to stay. On the one hand, we are grappling with age-old issues of water infrastructure, pipes over 100 years old. At the same time, there are major technological advances that could revolutionize the water sector.

The bottom line is that the water industry has a huge need to be more efficient. And there are higher expectations than ever from customers that information networks be more sophisticated. I don’t see any of this going away. If anything, there will be more players entering the market and more investment in this space.

 

Where can our readers get more information on smart water?

Bluefield provides data and analysis across global water markets, and smart water is a key area of focus for us. In April, we released a new report, US Smart Water: Defining the Opportunity, Competitive Landscape, and Market Outlook, which is available for purchase and download from our website (www.bluefieldresearch.com)


The Need for Water Service Resilience

By Shirley Ben-Dak, SWAN Marketing Manager

 
Published on March 9, 2017
 
 

The need for adopting sustainable water resilience strategies is becoming more apparent than ever. By 2050, the global population living in cities will increase from 50% today to 70%. A McKinsey study on transforming water economies reveals that cities are already facing increasing water stress, with demand expanded to outstrip supply by 40% by 2030. On this note, according to Arup’s recent publication, Water Resilience for Cities, “Ensuring a resilient water supply as climate patterns change and populations grow requires cities to introduce active water resource management measures.”

With this mind, city officials and water operators will need to take into account long-term thinking and planning, support the deployment and implementation of ICT and smart water technologies, as well as collaborate with global industry stakeholders. As the Global Resilience Partnership explains in their piece on fresh water resilience, “A 21st century approach to water and to development is one that builds resilience. This means that we look for ways in which people at risk could actually thrive under recurrent water challenges – to anticipate, mitigate and rise above floods, rather than being swept away from them.”

Let’s take a closer look at what’s involved in developing a resilient water management plan.

 

Defining Resilience

Common definitions of “water resilience” focus mostly on climate change and mitigating the impact of natural disasters. For example, according to the UK water regulator, Ofwat, resilience is “the ability to cope with and recover from disruption, and anticipate trends and variability in order to maintain services for people and protect the natural environment, now and in the future.”

Another key component highlighted by SWAN, the Smart Water Networks Forum, relates to “water service resilience,” which can be broken down into four, key pillars and applied to both the water and wastewater sectors: (1) Safe Water – Quality; (2) Reliable Service – Customers; (3) Secure Systems – IT; and (4) Efficient Operations – O&M.

 
 
 
 
 

The Four Key Pillars of Water Service Resilience

The above pillars can all be optimised by transforming collected network data into actionable information using smart water and wastewater technologies, explored further below.

 

Pillar 1: Safe Water – Quality

Traditional water quality sampling relies on time consuming and often costly monitoring techniques such as ‘grab’ sampling and field/laboratory analysis. However, there are now online sensors, which can communicate real-time data about various quality parameters to a software platform to rapidly locate the source and spread of contamination. Such efforts help manage and avoid quality issues before customers are impacted. This is also relevant to the wastewater industry, as there are technologies preventing harmful sewage overflows through the deployment of data technologies.

 

Pillar 2: Reliable Service – Customers

The concept of water service resilience doesn’t only refer to the infrastructure and the network itself, but also the end users that can be impacted by water flow and quality – namely the customers themselves. More and more water utilities are already seeing the importance of improving online customer engagement and are embracing the advent of smart water meter solutions and relevant smart leak detection technologies such as fixed, acoustic sensors and remote alert systems.

 

Pillar 3: Secure Systems – IT

When discussing water service resilience and the transition towards smart water networks, we must consider the importance of securing our systems from an IT perspective. The move to smart water networks is supported by ICT, as automation and cybersecurity technologies and systems are helping reduce risks involved in moving towards digital water and connected grids.

 

Pillar 4: Efficient Operations – O&M

Improving water service resilience will require utilities to maximise their operational resilience, including making strides towards adopting robust hardware, predictive modeling systems, and making intelligence decisions that are based on data collected and analysed. These and similar efforts are essential when looking to provide for more efficient O&M of water networks.

 

Securing Resilience

Building a sustainable water future will require not only understanding the now, but will require planning strategies 20-25 years down the line. According to a joint Arup-Siemens report, to become resilient, cities will need to think in in terms of robustness, redundancy, diversity and flexibility, responsiveness and coordination. To help streamline the process, water utilities and policymakers should first consider defining their main water service resilience indicators and goals, and then determine which individuals and/or team members will be needed in order to meet certain milestones. As this undertaking will require both management and employee support and collaboration, it should be neither rushed nor launched from a top-down approach.

To effectively secure resilience, forming industry partnerships and collaborative platforms will be essential. By taking into account different global perspectives and learning from best practices worldwide, cities and water utilities will be better equipped to handle the main shocks and stresses that infrastructure networks are facing due to both climate change and increasing water demand.

 

Gaining a Global Perspective

We encourage all those interested in learning more and exploring the topic of water resilience to join us for the upcoming SWAN 2017 Conference from 9-10 May in London. This will be the leading smart water conference of the year featuring 20 global water utility speakers from 13 different countries. Participants will have the opportunity to hear about more in depth case studies about the four key pillars of water service resilience as well as contribute their own insights on this increasingly important topic.

What are your views regarding water service resilience? Please share your thoughts: shirley@swan-forum.com.


Streamlining Innovation in the North American Water Sector

By Amir Cahn, SWAN Executive Director

  

Published on February 2, 2017

 
 
 

Last week, I had the pleasure of attending Smart Water: Tapping Technologies for Water Utilities, a joint-Workshop hosted by the SWAN North American Alliance and Cleantech San Diego at the Qualcomm headquarters in San Diego. The Workshop attracted nearly 200 attendees, several of whom were water utilities interested in learning about the vast opportunities in the smart water sector. The cross-industry panels sparked engaging discussions, particularly about the innovation processes of North American water utilities. Utility speakers highlighted the need for a “reverse pitch,” the challenges stemming from rigid RFP processes, and the idea of an “innovation lounge.”

Gary Eaton, Chief Innovation Officer at the San Diego County Water Authority, cited the importance of three “C’s.” First, creating a culture receptive to innovation in a risk-averse environment. Second, becoming agile, or building the right capabilities for staff to be innovative. Thirdly, creativity is necessary to take staff ideas from conception to implementation. Gary also stressed the idea of a “reverse pitch,” or gathering internal organisational feedback to develop a “wish list” of desired solutions. However, he stated that a significant challenge to enabling innovation is the long and arduous RFP cycle where desired technologies can become out of date or companies can even go out of business. To effectively manage the procurement process, adopting an open architecture format for other public agencies to utilise would be beneficial.

The need to be cutting-edge, not “bleeding edge” was emphasised by Joey Randall, Assistant General Manager at Olivenhain Municipal Water District. He mentioned that his utility needs to change the way they think about water to work smarter, not harder. In the end, it’s about how they do business and they must decide how their water service will change. Meanwhile, the concept of an “innovation lounge” was advocated by John Arena, Business Outreach Section Manager at the Metropolitan Water District of Southern California. Such a lounge would be an open platform for utility staff members to collaborate and suggest different projects and improvements.

Paul Gagliardo, Innovation Director at American Water further spoke in depth about their evaluation process to work with outside vendors and how they decide where to invest their resources. Below, is American Water’s seven step innovation process, which can also be applied to other utilities.

 
 
 

Source: Presentation by Paul Gagliardo, Innovation Manager at American Water during Smart Water Workshop, Jan. 25, 2017 in San Diego.

As the leading global hub for the smart water sector, the Smart Water Networks Forum (SWAN) brings together key players in the water industry to collaborate and share knowledge in order to accelerate the development of data-driven technologies in water and wastewater networks worldwide. The SWAN Americas Alliance serves to accelerate smart water and wastewater development in North and South America through the SWAN Forum’s collective industry expertise and collaborative partnerships. By joining SWAN or participating in the Alliance, utilities can leverage best practices from other global utilities and access a global innovation lounge.


View the recent Smart Water Workshop presentations: https://www.swan-forum.com/smart-water-workshop-2017/

Join the SWAN Americas Alliance: https://www.swan-forum.com/swan-americas-alliance/